
STEREOSELECTIVE CONJUGATE ADDITION OF ORGANOALUMINUM REAGENTS TO CHIRAL α,β -UNSATURATED KETALS

Yoshimi Fukutani, Keiji Maruoka, and Hisashi Yamamoto Department of Applied Chemistry Nagoya University, Chikusa, Nagoya 464, Japan

Summary: A new asymmetric synthesis of both enantiomers of β -substituted ketones is described.

Our recent investigation on the chemistry of activating a chiral protecting group by organometallic reagents¹ has prompted us to report a stereoselective conjugate addition of organoaluminum compounds to chiral α, β -unsaturated ketals, which, complementary to hitherto existing methodologies, provides a useful synthetic tool for preparation of optically active β -substituted ketones.²

The starting α, β -unsaturated ketal 1 was readily prepared by transacetalization of 2-cyclohexenone dimethyl ketal³ with (S,S)-(-)-N, N, N', N'-tetramethyltartaric acid diamide (2)⁴ in 85~90% yield. Treatment of 1 in toluene with trimethylaluminum (5 equiv) at 25°C for 3 h furnished after acetylation the conjugate adduct 3 exclusively in 94% yield. The optical purity of 3 was established to be 77% ee by GC analysis after converting to the acetal 4 of (-)-(2R,4R)-2,4-pentanediol (5) (cat. TsOH, toluene reflux, 90% yield). Hydrolysis of 3 (6N HCl-Dioxane) gave rise to (S)-3-methylcyclohexanone (6)⁵ in 85% yield. The choice of the tartaric acid diamide 2 as a chiral auxiliary is crucial for obtaining the high diastereoselection: Attempted reaction of 2-cyclohexenone ketal derived from (-)-(2R,3R)-2, 3butanediol (7) with Me₃Al under the comparable conditions resulted in formation of the conjugate adduct (91% yield) with a low level of asymmetric induction (~23% ee).⁶

entry	ketal ^{<u>a</u>}	aluminum reagent	solvent	condition (°C, h)	yield, % ^b	opt.yield,%ee ^c (confign)
1	∕~v°√ [×]	Me ₂ Al	toluene	-15, 144	94	65 (R)
2		J	toluene	5, 24	97	77 (R)
3			toluene	25, 3.5	91	78 (R)
4			CH ₂ CI ₂	25, 4	94	69 (R)
5	<u>, o√x</u>	Me ₃ Al	toluene	-15, 120	79	35 (S) ^d
6	Ph	Ū	toluene	5, 24	84	72 (S) ^{<u>d</u>}
7	^		toluene	25, 19	81	• 64 (S) [₫]
8			CH ₂ Cl ₂	25, 9	83	44 (S) ^{<u>d</u>}
9			CICH,CH,CI	25, 8	77	33 (S) ^{<u>d</u>}
10		Et ₃ Al	toluene	25, 13	74	70 (S) <mark>e</mark>
11	Ph ~ o L	Me ₃ Al	toluene	5, 24	84	54 (R) ^{<u>d</u>}
		······				

Table I. Conjugate Addition of Trialkylaluminums to α, β -Unsaturated Ketals

 $\frac{a}{d} X = CONMe_2$. $\frac{b}{I}$ Isolated yield. $\frac{c}{O}$ Obtained by GC after converting to the acetal of 5 and 7. Determined² by conversion to (S) - or (R)-4-phenylpentan-2-one, see ref 5. $\frac{e}{O}$ Brienne, M.-J.; Ouannes, C.; Jacques, J. <u>Bull. Soc. Chim. Fr. 1967</u>, 613.

As revealed in Table I, acyclic as well as cyclic substrates are equally employable. The ready accessibility of both ($\underline{\mathbf{R}}, \underline{\mathbf{R}}$)- and ($\underline{\mathbf{S}}, \underline{\mathbf{S}}$)-tartaric acid diamide in optically pure form⁴ allows the facile synthesis of β -substituted ketones in both enantiomeric forms from α, β -unsaturated ketones or their synthetic equivalents in a predictable manner. It should also be pointed out that the optical yield appeared to decrease by lowering the reaction temperature (entries 1~3, 5~7).⁷

REFERENCES AND NOTES

- 1) Fujiwara, J.; Fukutani, Y.; Hasegawa, M.; Maruoka, K.; Yamamoto, H. <u>J. Am. Chem. Soc</u>., in press.
- 2) Recent review: Tomioka, K.; Koga, K. In "Asymmetric Synthesis"; Morrison, J. D., Ed.; Academic Press: New York, 1983; Vol. 2, Part A, p 201.
- 3) Garbisch, Jr., E. W. J. Org. Chem. 1965, 30, 2109.
- 4) Seebach, D.; Kalinowski, H.-O.; Langer, W.; Crass, G.; Wilka, E.-M. Org. Syn. 1983, 61, 24.
- 5) Leyendecker, F.; Jesser, F.; Ruhland, B. Tetrahedron Lett. 1981, 22, 3601.
- 6) A similar result (26% ee) was obtained by using Me CuLi-BF₃ system: Ghribi, A.; Alexakis, A.; Normant, J. F. <u>Tetrahedron Lett</u>. <u>1984</u>, <u>25</u>, 3083.
- 7) The totally reverse trend was observed in the case of chiral α, β -unsaturated acetals. See ref 1.

(Received in Japan 31 August 1984)